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The Thue—Morse sequence is an example of an aperiodic structure with a singular
continuous contribution to the diffraction pattern. Many satellites observed near the
main diffraction peaks have been indexed and their intensities have been numerically
calculated. Details of such a calculation are presented for satellite peaks indexed by
1/3. An average-unit-cell approach was successfully used to describe probabilities
of atomic displacements from the points of the reference lattice. For a certain pa-
rameterisation of such probabilities, the results of fairly simple integer calculations
could be easily generalised. For some defined sets of points, the analytical expres-
sions for diffraction intensities were found and tested numerically on a wide range
of scattering vectors and for up t&?21toms. @ 2000 Academic Press
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INTRODUCTION

The one-sided Thue—Morse sequence can be defined on a two-letter alghapetsing
the following substitution rule: 0 (0)=0 1, 0(1) =1 0[1-11]. Starting with 0, one ob-
tains the sequence 0110100110010110 which is neither periodic nor quasiperiodic.
For such a sequence the two figures are replaced by the corresponding twodands (
b). In this paper it is assumed thlat= 0.1 anda = 10b = 1 and the “atoms” are placed
at the bond’s edges (see also [3, 4, 11-13]). In the diffraction pattern of such a struc
one can find two components that scale differently with the number of atdbinsThe
first component is known as the atomic contribution (Bragg peaks); it has intensities t
scale asN?. The second one is a singular continuous component, which scales fract:
with the number of atoms. For the Thue—Morse sequence the numbers of the two bc
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are equal, and a periodic subset made of every second position, with a periodicity ¢
stant equal td.o = (a + b) = 1.1, can be selected. The corresponding wave vector is the
equal tokg = 27 /(a+ b) ~ 5.71. Therefore, for the Thue—Morse sequence, there is &
average periodic structure with some appropriate decoration of the unit cell. Occupal
probabilities of atomic positions in such a unit cell are given by [14-A@)) = 0.5 and
P(£0.1) = 0.25, which leads to the following expression for the intensities of Bragg peal
atk =n - kg:
'l\(l—k; = %[1 + cogkb)]%. (1)

Equation (1) gives correct intensities at periodic positions of Bragg peaks and, in gene
describes the so-called envelope function shown as a dashed line in Fig. 1a. In the diffrac
pattern of the Thue—Morse sequence there is a lot of diffuse scattering, namely the previo
mentioned singular continuous part of the diffraction pattern (see Fig. 1b) [17, 18]. It
already known that there is a cumulation of diffuse scattering arqaiadky/3, which leads
to well-defined satellite reflections around such particular positions of scattering vectt
However, one should remember that peak positions fluctuate ampurichis feature is
also discussed in our paper. As already shown in [14], intensities at satellite positions s
fractally, disappearing gradually from the diffraction pattern with an increasing number
atoms. In the following we describe intensity at satellite positions givegobysing the
average-unit-cell approach recently developed by Wolny [14, 19-21]. This allows us 1
only to calculate the fractal exponents for the scaling behavior of diffraction intensities w
respect to the number of atoms, but also to write an analytical expression for diffract
intensities obtained for particular numbers of atoms.

AVERAGE-UNIT-CELL APPROACH

Using the concept of reference lattice [14, 20], we can write the structure factor f
monoatomic structure as
1/2
F(k) = Nf / P« (u) expiku) du, (2)
—1/2
wherePx(u) is the probability distribution of atomic displacements from the points of th

reference lattice. This distribution depends on the scattering vieeto?r/A; and for all
higher harmonics (i.em - k, wherem € Z) we have

A
Pri(U) ;Pk(ll—i-nm) (3)
and
+1//2 +1/2
F(mk) = Nf / Pr(W) - ™Y . du’ = Nf / Pc(u) - €mkU. du, (4)
V)2 —1/2

This means that the probability distributi®(u), |u| < 1/2, describes an average unit cell
for the scattering vectdt and all its higher harmonics.
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FIG. 1. Diffraction pattern of Thue—Morse sequence. (a) Envelope function given by (1) connects all maxil
of the main diffraction peaks. (b) Intensities of satellite reflections are well described by envelope functions g
by (10). Envelope curves have been calculated as a functikdasftwo different satellite positiong] = +ky/3
(dotted line) and) = —ko/3 (dashed line).

It has already been shown in [19] that for a modulated structure the expression for
structure factor of thenth satellite of anynth main reflection is

F(nk,mq):Nf//Pk,q(u, v) expli (nku+ maqu)] du dv, (5)

—Ug —v1

form,n e Z,u; = /K, vy = n/q, while the probability distributiorP (u, v) describes
an average unit cell for a series of main reflections and their satellites.
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THUE-MORSE SEQUENCE

For the considered Thue—Morse sequence there is a periodic superstructure consi
of every second atom at the lattice positioas= n(a + b), n € Z. The unit cell of this
superstructure is decorated by two atoms, one located at position 0 and the other occug
aperiodically the two possible positions at distanaesr b from the previous one. For
an infinite cluster, occupation probabilities are equil £ P, = 1/4), which leads to the
expression for the Bragg reflections given by (1). For any finite structure the difference
these two probabilities is bounded,

1

|Pa—Pb|§N» (6)

whereN is the number of atoms in the structure; the proof can be found in [15].

Satellite Reflections at & ko/3

Using two reference lattices, one with periodicity= (a + b) = 1.1 (corresponding to
the scattering vectdg of the main reflections) and the other with periodicity equalig 3
(which corresponds to the scattering veatet ko/3 describing positions of an appropriate
satellite), one gets the probability distribution shown in Fig. 2. The probability distributic
in such an average unit cell is non-zero for nine positions only; and, for the number of atc
given byN = 6n, n € Z, the distribution values are related as follows:

Pb=P,=P;=1/6 and P,+P;=Ps+ Ps=Ps+ Py=1/6. (7
This relation is a consequence of the fact that for each pérdtiere is an extra atom
placed at distanca or b from the super-lattice position (see Table I).

Using (7) and Fig. 2b, a set of three parametgrsi = 1, 2, 3) can be defined, such that

A1 = (P, — P3)N, Ay = (Ps — Ps)N, Az = (Py— Pg)N (8)

TABLE |
Occupation Probabilities of Nine Different Atomic
Positions in 3@ + b) Supercell

Position in a 34 + b)

n supercell P,

1 0 1/6

2 b P,+P;,=1/6
3 a

4 a+b 1/6

5 (@a+b)y+b P+ Ps=1/6
6 (a+b)+a

7 2(a+b) 1/6

8 2a+b)y+b B+ Py=1/6
9 2@a+b)+a
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The structure factor (i.e., the Fourier transform of (9)) is then given by

F(k+q) = Fik+q) + Fa(k + ). (20)
where
Fik+q) = %[1 +2cogq(a+b)) + cog(k+q)b) + cogkb—qa)
+ cogkb+ g(a+ 2b))]
Bw+qﬁ=%ﬁwmuk+mm—emﬂma—kmﬂ (11)

—iAgsin(kb+ q(a + 2b))
— %[exp(i (kb — ga)) — exp(—i(k + q)b)].

These equations describe correctly the structure factor for each scattering vector giver

2
QO:@,

nmeZ; S
a+b 3

Knm = nko + mcp ko = (12)
wherenkg is the position of the main Bragg peak amdp corresponds to the position of
the appropriatenth satellite. The first part of the structure facté# ) does not depend on
the number of atoms; fag = 0, it leads to expression (1) for the diffraction intensity of
Bragg reflections.

Parameters\; (shown in Fig. 3) depend on the number of atoms. Figure 3 indicate

and it has also been checked numerically, that for special values assumed by the humkt
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FIG. 3. Plots of A;/N,i =1, 2, 3 versus logN. Open circles mark points for whicN = 6-4" and A, =

Az = Ar/2.
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FIG. 4. Double logarithmic plots ofAs divided byN versus the number of atoms, for points marked in
Fig. 3. Solid lines represent Eq. (15) with the exponent equaktdog, 3.

atoms or more precisely wheti is equal to 6 4" (n =1, 2, .. .), the following relation is
fulfilled:

As= A= 2 (13)

In a double logarithmic scale the& plots versus the number of atoms are linear
(Fig. 4), with the linear coefficient equal to= log,(3) ~ 0.7925. The exact value of the
coefficient has been obtained for numerical integer calculations performed for a num
of atoms equal to 64* = 24 and 6 4?> = 96. For those numberg; is equal to 4 or 12,
which corresponds to probabiliti#d = 4/24 or 14/96 andP; = 0 or 2/96, respectively.
The plots ofA multiplied by a factor oN~* versus the number of atoms (Fig. 5) are almos
constant (within the range of some fluctuations) in the logarithmic scale tdierefore,

Aj o N9, wherea = log,(3). (14)

More precisely, foN =6-4"(n=1,2,3,...),

2N /3\" 2N /3)\"°%N/©® 4
A]_:— — = — — -
9 \4 9 \4 3

N o
(E) (15)
and

Az = Ay = Ay/2.

These relations have been checked in our “computer experiment.”
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FIG. 5. Parameters\; (i =1, 2) multiplied by a factor ofN— versus logarithm of the number of atoms.
Periodic plots with periodicity constant equal to log 4 can be found.

Number of Points Equal to N (2m)-6, me Z

It has been checked numerically that for e@¢h= (2m) -6, m € Z,. (i.e., for all even
multiples of 6),

A1 —Ap—A3=0 (16)

andA; - N7 (i.e., theA product with the number of atoms to the poweraf) is a periodic
function of logN, with a periodicity constant equal to log 4. This allows us to plpt N~
versust, where

£§=log, N mod] a7)

whichis shownin Fig. 6a. For each delta, acommon curve is obtained, which is indepenc
of the number of atoms. Actually, the curves look rather complicated, and a more gent
expression cannot be given yet. However, we have found the exact values for some sp
points. The two sets of points are as follows:

Set I:

N =24 Z Bm 4™, wherefm € {0, 1},
meZ, R (18)
Ar=4Y Bn-3"  As=Ap=.

2
meZ.,

Some examples of such numbers are

(N, A1) € {(24, 4), (96, 12), (120, 16), (384, 36) . . .}.
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FIG. 6. Plots of A; - N™ (i =1, 2, 3) versusé = [log, N mod 1] for the number of atoms equal to even
(a) and odd (b) multiples of 6. The first ten odd multiples are marked as open circles.

Setll:

N=12)" Bu-4",  wheregy € (0,1},
meZ,
(19)
A1=2> pn-3".  Ay=A1;  A3=0.
meZ,

Some examples of such numbers are

(N, A1) € {(12 2), (48, 6), (60, 8), (192 18)... .}.
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FIG.7. PlotofAz- N™. Az equals to zero foN = 122md+ﬂm - 4™ wherep, € {0, 1}.

Those two sets give an infinite number of different points in Fig. 6a. More detai
for Set Il can be found in Fig. 7. Those points can be easily ordered in a sequence

follows:
o [ 1 1 1
Series 1: & = {Iog4 _3(1+ Z)] log, {3<1+ 2 + E)} et }

= {0.953 0.989, ..., 1};

. [ 1\] [ 1 1\]
Series 2: & = {Iog4 3(1+ E) , log, 3(1+E+E> }

~ {0.836,0.847, ..., 0.850;

. r 1\] I 1 1\]
Series 3: & = {Iog4 3(1+ E) . log, 3<1+g+g>

—

~ {0.796,0.806 ..., 0.807};

Seried: & = {Iog4[3(1+ i)},log4[3(l+ le + 4|1+1>}}

and so on.

Number of Points Equal to M- (2m+1)-6, me Z

For all numbers of atoms equal to odd multiples of 6, the positions of points for/gach
(Fig. 6b) depart from the common curves shown in Fig. 6a for even multiples. Howev
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such differences decrease rapidly to zeroNas. The first 10 points in this figure are
marked with open circles. FAd above 100 one can hardly see any difference from th
previous behaviour, with the points almost lined up along the common curve. One «
conclude that for a large enough number of atoms (i.e., for more than a few hundred ato
there are almost no differences between the diffraction pattern obtained for the numbe
atoms equal to the neighbouring numbers given by even and those given by odd multi
of 6.

DIFFRACTION ANALYSIS

Using formulas (10) and (11), one can calculate intensities of diffraction peaks for 1
scattering vectors given by (12)

I = I:r%aal'|' Firznag’ (20)

where Frea and Fimag are the real and imaginary parts of the structure factor, respective
The formulas can be essentially reduced for certain points described by (18) and (19).
results are as follows:

Set I
N
Freal(d)) = £ [1 +2cogq(a + b)) + cosqb) + cogqa) + cogq(a + 2b))]
3
+ 4 Axlcos(gb) — cogqa)] (21)
Ay . . .
Fimag(q) = —~[sin(qb) —sin(qa) — 2sinq(a + 2b))].
where A; is given by (18). This is the envelope function plotted in Fig. 8a; it correctl

describes intensities at any position of the main peaks and their satellites given by (12

Set II:
N
Frea(Q) = E[l + 2cogq(a+ b)) + coggb) + cogga) + cogq(a + 2b))]
1
+ EAl[COS(q b) — cosqa)] (22)

Ar . .
Fimag(d) = 71[sm(q b) — sin(qa) — 2sing(a + 2b))].

where A; is given by (19). The appropriate plot of the envelope function is shown i
Fig. 8b. The two envelope functions in Figs. 8a and 8b have been calculated using
different formulas ((21) and (22)). There is only a small difference between those enveloj
as they correctly describe the intensities of the main reflections and their satellites.
scaling exponent for the diffraction intensities of satellite reflectionseis=2 log, 3,
which is very close to the one obtained previously [14].

In Figs. 8a and 8b one can see small differences between the envelope function an
maximum intensities of the appropriate satellites because the maximum intensity does
correspond to the exact position of the satellite with index equai2oThe small shift from
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FIG. 8. Diffraction patterns of the Thue—Morse sequence and corresponding envelope functions obtainec
different numbers of atoms: (&) = 96 is the second point of Set | (18) and the envelope function was calculate
according to (21); (bN = 60 is the third point of Set Il (19) and the envelope function was calculated accordin
to (22); (c)N = 144 is the number of atoms for which satellites are placed almost at perfect positions (see Fig.
in this case, a general expression (11) has been used for the envelope function calculation.

such a particular position is shown in Fig. 9. It oscillates and goes to zero for the num
of atoms increasing to infinity. However, it should be stressed that for any scattering vec
given by (12), the envelope function gives exactly the same value as the Fourier transfc
A special test has been also performed foe= 144, when the shift of peak position is

almost zero (Fig. 9). For this particular number, the envelope function fits the intensit
of the satellites almost perfectly (Fig. 8c). It should be noted that Figs. 1b and 8c sh
the same diffraction pattern (i.e., fof = 144) but the diffraction peaks are connected by
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FIG. 8—Continued

different envelope functions given by (11). In Fig. 1b, the two different curves are plott
as a function ok (11), for g =+ko/3 respectively; and in Fig. 8c the envelope curve is
plotted as a function aj (11), fork = 0.

For satellites indexed by/b and 17, similar properties have been observed [21]. Fracte
exponents have been determined to be equaltdog,45 for index equal to A5 and
a =logg, 7 forindex equal to A7. Properly definedh parameters can be expressed similarly
to (18) and (19), but the coefficients must be changed. For example, when the satellite ir

0.06 1 —m —

&
%
1

-0.02 [

—0.04

—0.06- | | || | I
102 10° 10*
N

FIG. 9. Shift of peak position with respect to the perfect position of the satellite indexedtb¥/8, versus
the number of atoms in cluster.
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is equal to 15, the value of the base of the power expansioriNfan (18) and (19) should
be changed from 4 to?4and forA,, from 3 to 5.

CONCLUSIONS

In this paper, the average-unit-cell approach has been used for the diffraction analys
singular continuous diffraction patterns of the Thue—Morse sequence. For satellite ref
tions with indices equal to/B of the main Bragg peaks, an average unit cell was construct
in the space defined by two variablesandv. The probability distribution obtained is non-
zero at only nine positions (Fig. 2a), which has allowed us to calculate envelope functi
for the main reflections as well as for the satellites. We noticed that probability distributic
depend on three parametexs(i = 1, 2, 3) defined by (8). For such’s, a general expres-
sion for the structure factor has been obtained (11).Aparameters depend on the number
of atoms, scaling al® [« =log, 3]. For numbers of atoms equal to even multiples of 6, for-
mula (16) holds, and only twa’s are independent. As a result of our computer experimen
we also found that for some specially defined numbers of atoms (i.e., for Sets | and 1), re
tions (18) and (19) hold respectively, and ch@arameter is enough to describe intensities
of the main reflections and their satellites. It has been shown that for double logarithr
plots,A’s change periodically with the number of atoms, with the periodicity constant equ
tolog(4), along a line with a slope equal to some fractal exponent. After appropriate scal
of the A’s (i.e., multiplication by the factoN~%) and after introduction of a new variable
& (17), a common curve (Fig. 6a) is obtained for all numbers of atoms. A similar curve
also obtained for all odd multiples of 6 as a limit of the number of atoms going to infinit
This saw-like curve is rather complicated and analytical expressions have been suggeste
special sets of numbers only (i.e., Set | given by (18) and Set Il by (19)). For those partict
numbers, exact formulas for diffraction intensities have been written as (21) and (22).

All the formulas in this paper have been tested numerically using integer calculations
the number of atoms limited by*2 Exact integer calculations and a wide rangécdllow
us to formulate more general conclusions. However, strict mathematical proofs (in progre
are stillrequired. Some results are already available and will be published separately [15,

Similar results have been obtained for all prime numbers less than or equal to 19, ex
for 17, where the fractal exponent has been approximated as equal tat0063302, which
corresponds to the already known value= {log 17+ 2log(4 + +/17)}/16 log 2. More
details of calculations will be published elsewhere. The next singular number is expec
for m = 41. However, the numerical calculations require calculations for integer numbe
more than 2 and are in progress.

This paper is an example of a simple “computer experiment.” In such an experime
calculations are performed for integer numbers only, and the strictly valid results can
easily generalised and checked for arbitrarilry large numbers. Any appropriate hypoth
can then be proven for arbitrarily large numbers, and its validity extrapolated for the num
of points to infinity. Results of such computer experiments can serve as a substitute fo
appropriate mathematical proof.
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